Login / Signup

Assessment of the potential vaping-related exposure to carbonyls and epoxides using stable isotope-labeled precursors in the e-liquid.

Anne LandmesserMax SchererGerhard SchererMohamadi SarkarJeffery S EdmistonReinhard NiessnerNikola Pluym
Published in: Archives of toxicology (2021)
The formation of carbonyls and epoxides in e-cigarette (EC) aerosol is possible due to heating of the liquid constituents. However, high background levels of these compounds have inhibited a clear assessment of exposure during use of ECs. An EC containing an e-liquid replaced with 10% of 13C-labeled propylene glycol and glycerol was used in a controlled use clinical study with 20 EC users. In addition, five smokers smoked cigarettes spiked with the described e-liquid. Seven carbonyls (formaldehyde, acetaldehyde, acrolein, acetone, crotonaldehyde, methacrolein, propionaldehyde) were measured in the aerosol and the mainstream smoke. Corresponding biomarkers of exposure were determined in the user's urine samples. 13C-labeled formaldehyde, acetaldehyde and acrolein were found in EC aerosol, while all seven labeled carbonyls were detected in smoke. The labeled biomarkers of exposure to formaldehyde (13C-thiazolidine carboxylic acid and 13C-N-(1,3-thiazolidine-4-carbonyl)glycine), acrolein (13C3-3-hydroxypropylmercapturic acid) and glycidol (13C3-dihydroxypropylmercapturic acid) were present in the urine of vapers indicating an EC use-specific exposure to these toxicants. However, other sources than vaping contribute to a much higher extent by several orders of magnitude to the overall exposure of these toxicants. Comparing data for the native (unlabeled) and the labeled (exposure-specific) biomarkers revealed vaping as a minor source of user's exposure to these toxicants while other carbonyls and epoxides were not detectable in the EC aerosol.
Keyphrases
  • pet imaging
  • ionic liquid
  • smoking cessation
  • room temperature
  • clinical trial
  • drinking water
  • risk assessment
  • computed tomography
  • climate change
  • electronic health record