Machine learning for spatial stratification of progressive cardiovascular dysfunction in a murine model of type 2 diabetes mellitus.
Andrya J DurrAnna S KorolQuincy A HathawayAmina KunovacAndrew D TaylorSaira RizwanMark V PintiJohn M HollanderPublished in: PloS one (2023)
Speckle tracking echocardiography (STE) has been utilized to evaluate independent spatial alterations in the diabetic heart, but the progressive manifestation of regional and segmental cardiac dysfunction in the type 2 diabetic (T2DM) heart remains understudied. Therefore, the objective of this study was to elucidate if machine learning could be utilized to reliably describe patterns of the progressive regional and segmental dysfunction that are associated with the development of cardiac contractile dysfunction in the T2DM heart. Non-invasive conventional echocardiography and STE datasets were utilized to segregate mice into two pre-determined groups, wild-type and Db/Db, at 5, 12, 20, and 25 weeks. A support vector machine model, which classifies data using a single line, or hyperplane, that best separates each class, and a ReliefF algorithm, which ranks features by how well each feature lends to the classification of data, were used to identify and rank cardiac regions, segments, and features by their ability to identify cardiac dysfunction. STE features more accurately segregated animals as diabetic or non-diabetic when compared with conventional echocardiography, and the ReliefF algorithm efficiently ranked STE features by their ability to identify cardiac dysfunction. The Septal region, and the AntSeptum segment, best identified cardiac dysfunction at 5, 20, and 25 weeks, with the AntSeptum also containing the greatest number of features which differed between diabetic and non-diabetic mice. Cardiac dysfunction manifests in a spatial and temporal fashion, and is defined by patterns of regional and segmental dysfunction in the T2DM heart which are identifiable using machine learning methodologies. Further, machine learning identified the Septal region and AntSeptum segment as locales of interest for therapeutic interventions aimed at ameliorating cardiac dysfunction in T2DM, suggesting that machine learning may provide a more thorough approach to managing contractile data with the intention of identifying experimental and therapeutic targets.