Login / Signup

Deciphering the Dynamic Processes at the Electrode-Electrolyte Interface for Stable Deposition of Lithium.

Arghya DuttaYoshimi KuboAtsuko NagatakiKyosuke Matsushita
Published in: ACS applied materials & interfaces (2023)
Realization of lithium-metal (Li) batteries is plagued by the dendritic deposition of Li leading to internal short-circuit and low Coulombic efficiency. The Li-deposition process largely depends on the liquid electrolyte that reacts with the Li metal and forms a solid electrolyte interphase (SEI) layer with diverse chemical and physical properties. Moreover, the electrolyte possesses characteristic ion transport behaviors and directly affects the deposition kinetics at the electrode surface. As a result, the convolution of interfacial, ion transport, and kinetic effects of an electrolyte obscures the understanding of Li deposition in Li-metal batteries. Herein, the dynamic processes and the interfacial properties of Li-metal electrodes are precisely delineated in representative ether electrolytes. It is found that a combination of homogeneous SEI and slow deposition kinetics produces layer-by-layer epitaxial growth of Li. In contrast, the dendritic growth of Li is observed when the SEI is inhomogeneous and the reaction rate is fast. Nevertheless, it is shown that a homogeneous SEI is not a prerequisite in suppressing Li dendrites when the adverse effect of an unfavorable SEI can be subdued by proper kinetic tuning at the interface. Furthermore, an otherwise kinetically unstable electrolyte can also be made compatible with the Li-metal electrode when covered with a properly designed SEI. This delineation of the roles of SEI and deposition kinetics gives deep insight into designing efficient electrolytes in Li-metal batteries.
Keyphrases
  • solid state
  • ion batteries
  • ionic liquid
  • emergency department
  • computed tomography
  • physical activity
  • gold nanoparticles
  • electronic health record
  • adverse drug