Login / Signup

Resistive Gas Sensors Based on 2D TMDs and MXenes.

Ali MirzaeiJin-Young KimHyoun Woo KimSang-Sub Kim
Published in: Accounts of chemical research (2024)
ConspectusGas sensors are used in various applications to sense toxic gases, mainly for enhanced safety. Resistive sensors are particularly popular owing to their ability to detect trace amounts of gases, high stability, fast response times, and affordability. Semiconducting metal oxides are commonly employed in the fabrication of resistive gas sensors. However, these sensors often require high working temperatures, bringing about increased energy consumption and reduced selectivity. Furthermore, they do not have enough flexibility, and their performance is significantly decreased under bending, stretching, or twisting. To address these challenges, alternative materials capable of operating at lower temperatures with high flexibility are needed. Two-dimensional (2D) materials such as MXenes and transition-metal dichalcogenides (TMDs) offer high surface area and conductivity owing to their unique 2D structure, making them promising candidates for realization of resistive gas sensors. Nevertheless, their sensing performance in pristine form is typically weak and unacceptable, particularly in terms of response, selectivity, and recovery time ( t rec ). To overcome these drawbacks, several strategies can be employed to enhance their sensing properties. Noble-metal decoration such as (Au, Pt, Pd, Rh, Ag) is a highly promising method, in which the catalytic effects of noble metals as well as formation of potential barriers with MXenes or TMDs eventually contribute to boosted response. Additionally, bimetallic noble metals such as Pt-Pd and Au/Pd with their synergistic properties can further improve sensor performance. Ion implantation is another feasible approach, involving doping of sensing materials with the desired concentration of dopants through control over the energy and dosage of the irradiation ions as well as creation of structural defects such as oxygen vacancies through high-energy ion-beam irradiation, contributing to enhanced sensing capabilities. The formation of core-shell structures is also effective, creating numerous interfaces between core and shell materials that optimize the sensing characteristics. However, the shell thickness needs to be carefully optimized to achieve the best sensing output. To reduce energy consumption, sensors can operate in a self-heating condition where an external voltage is applied to the electrodes, significantly lowering the power requirements. This enables sensors to function in energy-constrained environments, such as remote or low-energy areas. An important advantage of 2D MXenes and TMDs is their high mechanical flexibility. Unlike semiconducting metal oxides that lack mechanical flexibility, MXenes and TMDs can maintain their sensing performance even when integrated onto flexible substrates and subjected to bending, tilting, or stretching. This flexibility makes them ideal for fabricating flexible and portable gas sensors that rigid sensors cannot achieve.
Keyphrases
  • low cost
  • room temperature
  • risk assessment
  • transition metal
  • human health
  • quantum dots
  • radiation induced
  • heavy metals
  • mass spectrometry
  • drug delivery
  • drinking water