Wet Spinning of Flame-Retardant Cellulosic Fibers Supported by Interfacial Complexation of Cellulose Nanofibrils with Silica Nanoparticles.
Oleksandr NechyporchukRomain BordesTobias KöhnkePublished in: ACS applied materials & interfaces (2017)
The inherent flammability of cellulosic fibers limits their use in some advanced applications. This work demonstrates for the first time the production of flame-retardant macroscopic fibers from wood-derived cellulose nanofibrils (CNF) and silica nanoparticles (SNP). The fibers are made by extrusion of aqueous suspensions of anionic CNF into a coagulation bath of cationic SNP at an acidic pH. As a result, the fibers with a CNF core and a SNP thin shell are produced through interfacial complexation. Silica-modified nanocellulose fibers with a diameter of ca. 15 μm, a titer of ca. 3 dtex and a tenacity of ca. 13 cN tex-1 are shown. The flame retardancy of the fibers is demonstrated, which is attributed to the capacity of SNP to promote char forming and heat insulation on the fiber surface.