Gray and White Matter Metrics Demonstrate Distinct and Complementary Prediction of Differences in Cognitive Performance in Children: Findings from ABCD ( N = 11,876).
Lea C MichelEthan M McCormickRogier Andrew KievitPublished in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2024)
Individual differences in cognitive performance in childhood are a key predictor of significant life outcomes such as educational attainment and mental health. Differences in cognitive ability are governed in part by variations in brain structure. However, studies commonly focus on either gray or white matter metrics in humans, leaving open the key question as to whether gray or white matter microstructure plays distinct or complementary roles supporting cognitive performance. To compare the role of gray and white matter in supporting cognitive performance, we used regularized structural equation models to predict cognitive performance with gray and white matter measures. Specifically, we compared how gray matter (volume, cortical thickness, and surface area) and white matter measures (volume, fractional anisotropy, and mean diffusivity) predicted individual differences in cognitive performance. The models were tested in 11,876 children (ABCD Study; 5,680 female, 6,196 male) at 10 years old. We found that gray and white matter metrics bring partly nonoverlapping information to predict cognitive performance. The models with only gray or white matter explained respectively 15.4 and 12.4% of the variance in cognitive performance, while the combined model explained 19.0%. Zooming in, we additionally found that different metrics within gray and white matter had different predictive power and that the tracts/regions that were most predictive of cognitive performance differed across metrics. These results show that studies focusing on a single metric in either gray or white matter to study the link between brain structure and cognitive performance are missing a key part of the equation.