Login / Signup

Pressure-Gradient Sorption Calorimetry of Flexible Porous Materials: Implications for Intrinsic Thermal Management.

Wesley K FeldmannCatharine EsterhuysenLeonard J Barbour
Published in: ChemSusChem (2020)
Thermal management is an important consideration for applications that involve gas sorption by flexible porous materials. A pressure-gradient differential scanning calorimetric method was developed to measure the energetics of adsorption and desorption both directly and continuously. The method was applied to the uptake and release of CO2 by the well-known flexible metal-organic frameworks MIL-53(Al) and MOF-508b. High-resolution differential enthalpy plots and total integral enthalpy values for sorption allow comprehensive assessment of the thermal behavior of the materials throughout the entire sorption process. During adsorption, the investigated materials display the ability to offset exothermic adsorption enthalpy against endothermic structural transition enthalpy, and vice versa during desorption. The results show that flexible materials offer reduced total integral heat over a working range when compared to rigid materials.
Keyphrases
  • metal organic framework
  • high resolution
  • sewage sludge
  • mass spectrometry
  • risk assessment
  • heat stress
  • ionic liquid
  • solid phase extraction
  • tissue engineering