Software Fault Localization through Aggregation-Based Neural Ranking for Static and Dynamic Features Selection.
Abdulaziz AlhumamPublished in: Sensors (Basel, Switzerland) (2021)
The automatic localization of software faults plays a critical role in assisting software professionals in fixing problems quickly. Despite various existing models for fault tolerance based on static features, localization is still challenging. By considering the dynamic features, the capabilities of the fault recognition models will be significantly enhanced. The current study proposes a model that effectively ranks static and dynamic parameters through Aggregation-Based Neural Ranking (ABNR). The proposed model includes rank lists produced by self-attention layers using rank aggregation mechanisms to merge them into one aggregated rank list. The rank list would yield the suspicious code statements in descending order of the rank. The performance of ABNR is evaluated against the open-source dataset for fault prediction. ABNR model has exhibited noticeable performance in fault localization. The proposed model is evaluated with other existing models like Ochiai, Fault localization technique based on complex network theory, Tarantula, Jaccard, and software-network centrality measure concerning metrics like assertions evaluated, Wilcoxon signed-rank test, and Top-N.