Login / Signup

Antibacterial and antibiofilm effect of Zinc Oxide nanoparticles on P. aeruginosa variants isolated from young patients with cystic fibrosis.

Mona KonkuriSharmin KharraziYousef ErfaniSetareh Haghighat
Published in: Microbial pathogenesis (2024)
The optimum concentration of ZnO-np with a higher inhibitory zone was 16 μg/ml (MIC) and 32 μg/ml (MBC). All isolates were resistant to applied antibiotics, and about 45 % of isolates were strong biofilm-forming bacteria. After treatment with 16 μg/ml ZnO-np, all strains became susceptible to the applied antibiotic except for amikacin, which confers an intermediate pattern. About 63 % and 20 % of isolates were, respectively, non-biofilm and weak biofilm-forming bacteria following the addition of ZnO-np. Relative gene expression of gacA, lasR, and rhlR genes were downregulated significantly (P < 0.001). Although the retS did not have a significant reduction (P = 0.2) CONCLUSION: ZnO-np at a concentration of 16 μg/ml could significantly reduce the P. aeruginosa infection by altering the antibiotic susceptibility pattern and inhibiting biofilm formation. Due to their photocatalytic properties and their ability to penetrate the extracellular polysaccharide layer, ZnO nanoparticles can produce ROS, which increases their susceptibility to antibiotics. Nasal delivery of ZnO-np in the form of aerosol can be considered a potential strategy to decrease the mortality rate in CF patients at an early age.
Keyphrases