Login / Signup

Effects of lianas on forest biogeochemistry during their lives and afterlives.

Gbadamassi G O DossaHong-Lin LiBo PanTial C LingDouglas A SchaeferMareike RoederDenis M NjorogeJuan ZuoLiang SongBismark Ofosu-BamfoStefan A SchnitzerRhett D HarrisonFrans BongersJiao-Lin ZhangKun-Fang CaoJennifer Sarah PowersZe-Xin FanYa-Jun ChenRichard T CorlettGerhard ZotzJacek OleksynTomasz P WykaJean Evans Israel CodjiaJohannes H C Cornelissen
Published in: Global change biology (2024)
Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.
Keyphrases
  • climate change
  • human health
  • genome wide
  • high intensity
  • signaling pathway
  • dna methylation
  • case control
  • wastewater treatment
  • antibiotic resistance genes
  • risk assessment
  • anaerobic digestion
  • genetic diversity