Login / Signup

Layered dermal reconstitution through epigallocatechin 3-gallate loaded chitosan nanoparticle within enzymatically crosslinked polyvinyl alcohol/collagen fibrous mat.

Elham BadaliArash GoodarziHamid KhodayariSaeed KhodayariAzizollah HabibiSajad HasanzadehMehdi Khanmohamadi
Published in: Journal of biomaterials applications (2022)
Biocompatible electrospun fiber comprising bioactive substrates has potential to implant into the wound site as a reliable therapeutic approach in tissue regeneration. Here, electrospun polyvinyl alcohol conjugated tyramine (PVA-Tyr) and collagen (Col) fibrous mat containing chitosan nanoparticle loaded with epigallocatechin 3-gallate (NCs-EGCG) developed and the composite was applied to evaluate in vivo wound healing ability of fabricated wound patch. The synthesized PVA-Tyr and Col were electrospun and crosslinked through peroxidase reaction in presence of vaporized H 2 O 2 as an electron donor which covalently proceeded conjugation of phenolic groups and could develop hybrid fibrous mat in stable structure and uniform shapes. The EGCG as anti-oxidative/inflammatory substrate was encapsulated efficiently in NCs and released in a sustained manner. The hybrid fibers seeded with adipose-derived stem cells presented appropriate biocompatibility from biophysical and biochemical viewpoints and in following wound healing ability in a full-thickness excisional animal model. Fourier transform infrared spectroscopy (FTIR) confirmed all typical absorption characteristics of PVA-Tyr and Col as well as NCs and EGCG. The results showed the perfect hydrophilic/hydrophobic ratio and good mechanical and structural characteristics including shape uniformity and porosity. Interestingly, cellular attachment and proliferation on the PVA-Tyr/Col fibers containing NCs-EGCG were higher than control samples. The histological analysis of hybrid fibrous patch could be suggested the applicability of this structure as suitable skin substitutes to repair injured skin.
Keyphrases