Flexible Terahertz Beam Manipulations Based on Liquid-Crystal-Integrated Programmable Metasurfaces.
Xiaojian FuLei ShiJun YangYuan FuChenxi LiuJun Wei WuFei YangLei BaoTie Jun CuiPublished in: ACS applied materials & interfaces (2022)
Terahertz wave manipulations, especially the phase manipulations, through metasurfaces has attracted considerable interests. Here, we develop a terahertz beam steering device using the liquid-crystal (LC)-integrated programmable metasurface. Specifically, a reflective-type 1 bit metasurface element is designed by employing a multilayer structure composed of metallic back plate-LC-complementary split ring resonator (CSRR). Numerical simulations show that, at the optimized operation frequency of 0.675 THz, the developed metasurface element has a nearly 180° phase difference between unbiased and biased states with close reflection amplitudes. Furthermore, a one-dimensional programmable metasurface array with 32 independently controlled subarrays is designed and fabricated using the lithography technology. Both simulated and measured far-field scattering patterns of the metasurface certify the anomalous beam reflection and wide-angle beam steering performances. Nevertheless, the optimal frequency red shifts to 0.645 THz in the experiment. This work may advance the application of metasurfaces in terahertz beam manipulation devices.