Login / Signup

Glycoprotein-Specific Polyclonal Antibodies Targeting Machupo Virus Protect Guinea Pigs against Lethal Infection.

Joseph W GoldenSteven A KwilasJay W Hooper
Published in: Vaccines (2024)
Convalescent plasma has been shown to be effective at protecting humans against severe diseases caused by New World (NW) arenaviruses, including Junin virus (JUNV) and Machupo virus (MACV). This plasma contains antibodies against the full complement of structural proteins including the nucleocapsid and envelope glycoproteins (GPcs) consisting of GP1 and GP2. To gain insights into the protective and cross-protective properties of anti-GPc-specific polyclonal antibodies, we evaluated the ability of a DNA vaccine-produced anti-GPc rabbit antisera targeting MACV strain Carvallo to provide heterologous protection against another MACV strain termed Chicava in the Hartley guinea pig model. The neutralizing activity of the rabbit antisera against the heterologous MACV strains Chicava and Mallale was found to be 54-fold and 23-fold lower, respectively, compared to the titer against the homologous MACV strain Carvallo in the PRNT50 assay. Despite lower neutralizing activity against the strain Chicava, the rabbit antisera protected 100% of the guinea pigs from this strain when administered up to four days post-infection, whereas all the control animals succumbed to the disease. Using vesicular stomatitis virus (VSV) particles pseudotyped with MACV GPc, we identified a single amino acid difference at position 122 between the strains Chicava and Carvallo GPc that significantly influenced the neutralization activity of the rabbit antisera. These findings indicate that polyclonal antibodies targeting the MACV glycoproteins can protect against lethal infection in a post-challenge setting. These data will help guide future antibody-based therapeutics development against NW arenaviruses.
Keyphrases
  • escherichia coli
  • cancer therapy
  • amino acid
  • dna damage
  • small molecule
  • early onset
  • dengue virus
  • zika virus
  • dna repair
  • drug delivery
  • current status
  • deep learning
  • drug induced
  • aedes aegypti