Login / Signup

Evolutionary insights from an anatomical network analysis of the hyolaryngeal apparatus in extant archosaurs (birds and crocodilians).

Junki YoshidaYoshitsugu KobayashiAnthony R Fiorillo
Published in: Anatomical record (Hoboken, N.J. : 2007) (2023)
Adaptive radiation of archosaurs, represented by crocodilians, non-avian dinosaurs, and birds, since the Mesozoic has been studied mainly based on their major skeletal elements (skull, vertebrae, and limbs). However, little is known about the evolution of their hyolaryngeal apparatus, which is involved with feeding, respiration, and vocalization, because of poor fossil preservation and the difficulty in determining the musculoskeletal homology of the apparatus. Network analysis is a framework to quantitatively characterize the topological organization of anatomical structures for comparing structural integration and modularity regardless of ambiguous homology. Herein, we modeled the musculoskeletal system of hyolarynx in six species of extant archosaurs and its sister-taxon turtle, and conducted a network analysis using network parameters, modular partition, and bone centrality in a phylogenetic framework. The network parameters reveal that ancestral archosaurs have reduced the numbers of elements and links and acquired complex networks as a whole domain with strong modularity in the hyolarynx. Furthermore, the modular partition and centrality reveal that the hyoids are highly evolvable, while the larynx is constrained and less evolvable. The archosaur hyolarynx exhibits different evolutionary trends: crocodilians with the system integration, basihyal simplification, and ceratobranchial centralization; and birds with the simplicity, weak integration, and modularity of the hyolarynx, laryngeal integration with cricoid centrality, and tongue-module expansion with the acquisition of paraglossal. Four hyolaryngeal bones (ceratobranchial, basihyal, paraglossal, and cricoid) have played important roles in archosaur evolution, and their fossil records are keys to understanding the two major archosaur lineages toward crocodilians and birds.
Keyphrases
  • network analysis
  • genome wide
  • single cell
  • dna methylation
  • bone mineral density
  • high resolution
  • radiation therapy
  • soft tissue
  • body composition
  • mass spectrometry
  • postmenopausal women
  • genetic diversity