Organocatalytic Ring-Opening Copolymerization of Trimethylene Carbonate and Dithiolane Trimethylene Carbonate: Impact of Organocatalysts on Copolymerization Kinetics and Copolymer Microstructures.
Jingjing WeiHao MengBeibei GuoZhiyuan ZhongFenghua MengPublished in: Biomacromolecules (2018)
The ring opening copolymerization of trimethylene carbonate (TMC) and dithiolane trimethylene carbonate (DTC) using acidic and basic organocatalysts, i.e., diphenyl phosphate (DPP) and triazabicyclo[4.4.0]dec-5-ene (TBD), was systemically investigated. Interestingly, DPP and TBD gave rise to completely different polymerization kinetics and copolymer sequences. The copolymerization of TMC and DTC using methoxy poly(ethylene glycol) (mPEG-OH) as an initiator and DPP as a catalyst proceeded in a first-order manner and to near completion in 72 h for both monomers, yielding well-controlled copolymers with random sequences, predictable molar mass, and low dispersity ( Mw/ Mn = 1.09-1.19). By contrast, TBD brought about much faster copolymerization of TMC and DTC under similar conditions (high monomer conversion achieved in 2-4 h), to furnish copolymers with controlled molar mass and moderate dispersity ( Mw/ Mn = 1.27-1.80). Moreover, polymerization kinetics revealed that DTC was preferentially polymerized followed by first-order polymerization of TMC, leading to blocky copolymers. These results signify that type of organocatalysts has a critical influence on polymerization kinetics of cyclic carbonates, copolymer sequence, and molar mass control.