Login / Signup

Ortho -Phosphinoarenesulfonamide-Mediated Staudinger Reduction of Aryl and Alkyl Azides.

Xingzhuo LiZhenguo WangWenjun LuoZixu WangKeshu YinLe Li
Published in: Molecules (Basel, Switzerland) (2022)
Conventional Staudinger reductions of organic azides are sluggish with aryl or bulky aliphatic azides. In addition, Staudinger reduction usually requires a large excess of water to promote the decomposition of the aza -ylide intermediate into phosphine oxide and amine products. To overcome the challenges above, we designed a novel triaryl phosphine reagent 2c with an ortho -SO 2 NH 2 substituent. Herein, we report that such phosphine reagents are able to mediate the Staudinger reduction of both aryl and alkyl azides in either anhydrous or wet solvents. Good to excellent yields were obtained in all cases (even at a diluted concentration of 0.01 M). The formation of B-TAP, a cyclic aza -ylide, instead of phosphine oxide, eliminates the requirement of water in the Staudinger reduction. In addition, computational studies disclose that the intramolecular protonation of the aza -ylide by the ortho -SO 2 NH 2 group is kinetically favorable and responsible for the acceleration of Staudinger reduction of the aryl azides.
Keyphrases
  • ionic liquid