Login / Signup

Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning.

Rigas-Filippos SoldatosMicah CearnsMette Ø NielsenCostas KolliasLida-Alkisti XenakiPentagiotissa StefanatouIrene RalliStefanos DimitrakopoulosAlex HatzimanolisIoannis KosteletosIlias I VlachosMirjana SelakovicStefania FoteliNikolaos NianiakasLeonidas MantonakisTheoni F TriantafyllouAggeliki NtigridakiVanessa ErmiliouMarina VoulgarakiEvaggelia PsarraMikkel E SørensenKirsten B BojesenKaren TangmoseAnne M SigvardKaren S AmbrosenToni MerittWarda SyedaBirte Y GlenthøjNikolaos KoutsoulerisChristos PantelisBjørn H EbdrupNikos Stefanis
Published in: Schizophrenia bulletin (2021)
Using items from common and validated clinical scales, our model significantly predicted early remission in patients with first-episode psychosis. Although replicated in an independent cohort, forward testing between machine learning models and clinicians' assessment should be undertaken to evaluate the possible utility as a routine clinical tool.
Keyphrases
  • machine learning
  • end stage renal disease
  • newly diagnosed
  • ejection fraction
  • chronic kidney disease
  • disease activity
  • peritoneal dialysis
  • palliative care
  • ulcerative colitis
  • rheumatoid arthritis
  • clinical evaluation