Login / Signup

Singular Hall Response from a Correlated Ferromagnetic Flat Nodal-Line Semimetal.

Woohyun ChoYoon-Gu KangJaehun ChaDong Hyun David LeeDo Hoon KiemJaewhan OhYanggeun JooSangsu YerDohyun KimJongho ParkChangyoung KimYongsoo YangYeongkwan KimMyung Joon HanHeejun Yang
Published in: Advanced materials (Deerfield Beach, Fla.) (2024)
Topological quantum phases are largely understood in weakly correlated systems, which have identified various quantum phenomena, such as the spin Hall effect, protected transport of helical fermions, and topological superconductivity. Robust ferromagnetic order in correlated topological materials particularly attracts attention, as it can provide a versatile platform for novel quantum devices. Here, a singular Hall response arising from a unique band structure of flat topological nodal lines in combination with electron correlation in a van der Waals ferromagnetic semimetal, Fe 3 GaTe 2 , with a high Curie temperature of T c = 347 K is reported. High anomalous Hall conductivity violating the conventional scaling, resistivity upturn at low temperature, and a large Sommerfeld coefficient are observed in Fe 3 GaTe 2 , which implies heavy fermion features in this ferromagnetic topological material. The scanning tunneling microscopy, circular dichroism in angle-resolved photoemission spectroscopy, and theoretical calculations support the original electronic features of the material. Thus, low-dimensional Fe 3 GaTe 2 with electronic correlation, topology, and room-temperature ferromagnetic order appears to be a promising candidate for robust quantum devices.
Keyphrases