Login / Signup

Tannic Acid Radicals in the Presence of Alkali Metal Salts and Their Impact on the Formation of Silicate-Phenolic Networks.

Florian WeberEinar SagstuenQi-Zhi ZhongTian ZhengHanna Tiainen
Published in: ACS applied materials & interfaces (2020)
Polyphenolic molecules have become attractive building blocks for bioinspired materials due to their adhesive characteristics, capacity to complex ions, redox chemistry, and biocompatibility. For the formation of tannic acid (TA) surface modifications based on silicate-phenolic networks, a high ionic strength is required. In this study, we investigated the effects of NaCl, KCl, and LiCl on the formation of TA coatings and compared it to the coating formation of pyrogallol (PG) using a quartz-crystal microbalance. We found that the substitution of NaCl with KCl inhibited the TA coating formation through the high affinity of K+ to phenolic groups resulting in complexation of TA. Assessment of the radical formation of TA by electron paramagnetic resonance spectroscopy showed that LiCl resulted in hydrolysis of TA forming gallic acid radicals. Further, we found evidence for interactions of LiCl with the Siaq crosslinker. In contrast, the coating formation of PG was only little affected by the substitution of NaCl with LiCl or KCl. Our results demonstrate the interaction potential between alkali metal salts and phenolic compounds and highlight their importance in the continuous deposition of silicate-phenolic networks. These findings can be taken as guidance for future biomedical applications of silicate-phenolic networks involving monovalent ions.
Keyphrases
  • ionic liquid
  • quantum dots
  • magnetic resonance imaging
  • risk assessment
  • current status
  • single molecule
  • atomic force microscopy
  • solid state