Controlled Release in Hydrogels Using DNA Nanotechnology.
Chih-Hsiang HuRémi VenezianoPublished in: Biomedicines (2022)
Gelatin is a biopolymer widely used to synthesize hydrogels for biomedical applications, such as tissue engineering and bioinks for 3D bioprinting. However, as with other biopolymer-based hydrogels, gelatin-hydrogels do not allow precise temporal control of the biomolecule distribution to mimic biological signals involved in biological mechanisms. Leveraging DNA nanotechnology tools to develop a responsive controlled release system via strand displacement has demonstrated the ability to encode logic process, which would enable a more sophisticated design for controlled release. However, this unique and dynamic system has not yet been incorporated within any hydrogels to create a complete release circuit mechanism that closely resembles the sequential distribution of biomolecules observed in the native environment. Here, we designed and synthesized versatile multi-arm DNA motifs that can be easily conjugated within a gelatin hydrogel via click chemistry to incorporate a strand displacement circuit. After validating the incorporation and showing the increased stability of DNA motifs against degradation once embedded in the hydrogel, we demonstrated the ability of our system to release multiple model cargos with temporal specificity by the addition of the trigger strands specific to each cargo. Additionally, we were able to modulate the rate and quantity of cargo release by tuning the sequence of the trigger strands.