Login / Signup

Distinguishing Laparoscopic Surgery Experts from Novices Using EEG Topographic Features.

Takahiro ManabeF N U RahulYaoyu FuXavier IntesSteven D SchwaitzbergSuvranu DeLora CavuotoAnirban Dutta
Published in: Brain sciences (2023)
The study aimed to differentiate experts from novices in laparoscopic surgery tasks using electroencephalogram (EEG) topographic features. A microstate-based common spatial pattern (CSP) analysis with linear discriminant analysis (LDA) was compared to a topography-preserving convolutional neural network (CNN) approach. Expert surgeons (N = 10) and novice medical residents (N = 13) performed laparoscopic suturing tasks, and EEG data from 8 experts and 13 novices were analysed. Microstate-based CSP with LDA revealed distinct spatial patterns in the frontal and parietal cortices for experts, while novices showed frontal cortex involvement. The 3D CNN model (ESNet) demonstrated a superior classification performance (accuracy > 98%, sensitivity 99.30%, specificity 99.70%, F1 score 98.51%, MCC 97.56%) compared to the microstate based CSP analysis with LDA (accuracy ~90%). Combining spatial and temporal information in the 3D CNN model enhanced classifier accuracy and highlighted the importance of the parietal-temporal-occipital association region in differentiating experts and novices.
Keyphrases
  • working memory
  • convolutional neural network
  • laparoscopic surgery
  • functional connectivity
  • resting state
  • deep learning
  • healthcare
  • machine learning
  • minimally invasive
  • electronic health record
  • robot assisted