Login / Signup

Harnessing a Ti-based MOF for selective adsorption and visible-light-driven water remediation.

Stephen Nagaraju MyakalaMagdalena LadisichPablo AyalaHannah RablSamar BatoolMichael S ElsaesserAlexey S CherevanDominik Eder
Published in: Journal of materials chemistry. A (2024)
In pursuit of universal access to clean water, photocatalytic water remediation using metal-organic frameworks (MOFs) emerges as a strong alternative to the current wastewater treatment methods. In this study, we explore a unique Ti-based MOF comprised of 2D secondary-building units (SBUs) connected via biphenyl dicarboxylic acid (H 2 bpdc) ligands - denoted as COK-47 - as a visible-light-driven photocatalyst for organic dye degradation. Synthesized via a recently developed microwave-assisted method, COK-47 exhibits high hydrolytic stability, demonstrates a strong dye uptake, and shows noteworthy dye-degradation performance under UV, visible, and solar light, outperforming benchmark TiO 2 and MIL-125-Ti photocatalysts. Due to its nanocrystalline structure and surface termination with organic linkers, COK-47 exhibits selective degradation of cationic pollutants while remaining inert towards anionic dyes, thus highlighting its potential for selective oxidation reactions. Mechanistic studies reveal the involvement of superoxide radicals in the degradation process and emphasize the need to minimize the recombination of photogenerated electron-hole pairs to achieve optimal performance. Post-catalytic studies further confirm the high stability and reusability of COK-47, making it a promising photocatalyst for water purification, organic transformation, and water splitting reactions under visible light.
Keyphrases