Login / Signup

Active Beam Steering Enabled by Photonic-Crystal Surface-Emitting Laser.

Mingjin WangFeifan WangJingxuan ChenWenzhen LiuJiahao SiYuanbo XuZheng ZhangZihao ChenChao PengWanhua Zheng
Published in: ACS nano (2024)
Emitting light toward on-demand directions is important for various optoelectronic applications, such as optical communication, displaying, and ranging. However, almost all existing directional emitters are assemblies of passive optical antennae and external light sources, which are usually bulky and fragile and show unendurable loss of light power. Here we theoretically propose and experimentally demonstrate a conceptual design of a directional emitter, by using a single surface-emitting laser source itself to achieve dynamically controlled beam steering. The laser is built on photonic crystals that operate near the band edges in the continuum. By shrinking laser sizes to tens-of-wavelength, the optical modes quantize in three-dimensional momentum space, and each of them directionally radiates toward the far-field. Further utilizing the luminescence spectrum shifting effect under current injection, we consecutively select a sequence of modes into lasing action and show the laser maintaining single-mode operation with line widths at a minimum of 1.8 MHz and an emitting power of ∼10 milliwatts, and we demonstrate fast beam steering across a range of 3.2° × 4° on a time scale of 500 ns. Our work proposes a method for on-chip active beam steering for the development of automotive, industrial, and robotic applications.
Keyphrases