Three-Dimensional Extrusion Printed Urinary Specific Grafts: Mechanistic Insights into Buildability and Biophysical Properties.
Sulob Roy ChowdhuryGarga MondalPraneeth RatnayakeBikramjit BasuPublished in: ACS biomaterials science & engineering (2024)
The compositional formulations and the optimization of process parameters to fabricate hydrogel scaffolds with urological tissue-mimicking biophysical properties are not yet extensively explored, including a comprehensive assessment of a spectrum of properties, such as mechanical strength, viscoelasticity, antimicrobial property, and cytocompatibility. While addressing this aspect, the present work provides mechanistic insights into process science, to produce shape-fidelity compliant alginate-based biomaterial ink blended with gelatin and synthetic nanocellulose. The composition-dependent pseudoplasticity, viscoelasticity, thixotropy, and gel stability over a longer duration in physiological context have been rationalized in terms of intermolecular hydrogen bonding interactions among the biomaterial ink constituents. By varying the hybrid hydrogel ink composition within a narrow compositional window, the resulting hydrogel closely mimics the natural urological tissue-like properties, including tensile stretchability, compressive strength, and biophysical properties. Based on the printability assessment using a critical analysis of gel strength, we have established the buildability of the acellular hydrogel ink and have been successful in fabricating shape-fidelity compliant urological patches or hollow cylindrical grafts using 3D extrusion printing. Importantly, the new hydrogel formulations with good hydrophilicity, support fibroblast cell proliferation and inhibit the growth of Gram-negative E. coli bacteria. These attributes were rationalized in terms of nanocellulose-induced physicochemical changes on the scaffold surface. Taken together, the present study uncovers the process-science-based understanding of the 3D extrudability of the newly formulated alginate-gelatin-nanocellulose-based hydrogels with urological tissue-specific biophysical, cytocompatibility, and antibacterial properties.