Login / Signup

Subgrouping and analysis of relationships between classical swine fever virus identified during the 2018-2020 epidemic in Japan by a novel approach using shared genomic variants.

Takehisa YamamotoKotaro SawaiTatsuya NishiKatsuhiko FukaiTomoko KatoYoko HayamaYoshinori MuratoYumiko ShimizuEmi Yamaguchi
Published in: Transboundary and emerging diseases (2021)
Classical swine fever (CSF) is a worldwide devastating disease of the pig industry caused by classical swine fever virus (CSFV). In September 2018, an outbreak of CSF occurred in Japan where the disease had been eradicated and was officially designated a CSF-free country since 2015. Following the detection of the first 2018 case on a farm in Gifu Prefecture, the disease spread among both farm pigs and wild boars and still continues. Epigenome analysis using whole-genome information is helpful in identifying the infection route, but the current approaches provide an insufficient resolution. In this study, a novel method of using single-nucleotide variants (SNVs) was employed to identify the associations among 158 isolates (65 from farms and 93 from wild boars). The identified groups of CSFV strains were plotted in different colours on a map, identifying the location where each strain was collected. The lack of an SNV set shared between the index case and the other strains suggested the first infection in Japan during the outbreak occurred in wild boars, not at the index farm. For the Atsumi Peninsula outbreaks, where nine farms were found infected within a 10-km radius area, the farm strains were assembled into three groups, suggesting these outbreaks resulted from at least three different infection events in this area. For the infections in the area around Saitama Prefecture, an area remote from the epicentre, strains from both the farms and wild boars were identified as being in the same group, suggesting they resulted from one viral introduction. Likewise, seven infected farms in Okinawa Prefecture, almost 1,500 km from Gifu Prefecture, were identified as being in a common, but separate group. By demonstrating the variety of transmission routes and possibility of long-distance infection, these results will help improve disease control measures.
Keyphrases
  • escherichia coli
  • copy number
  • dna methylation
  • sars cov
  • genetic diversity
  • social media
  • health information
  • label free