Login / Signup

Advances in stable isotope labeling: dynamic labeling for spatial and temporal proteomic analysis.

Nicole C BellerAmanda B Hummon
Published in: Molecular omics (2022)
The field of proteomics is continually improving, requiring the development of new quantitative methods. Stable isotope labeling in cell culture (SILAC) is a metabolic labeling technique originating in the early 2000s. By incorporating isotopically labeled amino acids into the media used for cell culture, unlabeled versus labeled cells can be differentiated by the mass spectrometer. Traditional SILAC labeling has been expanded to pulsed applications allowing for a new quantitative dimension of proteomics - temporal analysis. The complete introduction of Heavy SILAC labeling chased with surplus unlabeled medium mimics traditional pulse-chase experiments and allows for the loss of heavy signal to track proteomic changes over time. In a similar fashion, pulsed SILAC (pSILAC) monitors the initial incorporation of a heavy label across a period of time, which allows for the rate of protein label integration to be assessed. These innovative techniques have aided in inspiring numerous SILAC-based temporal and spatial labeling applications, including super SILAC, spike-in SILAC, spatial SILAC, and a revival in label multiplexing. This review reflects upon the evolution of SILAC and the pulsed SILAC application, introduces advances in SILAC labeling, and proposes future perspectives for this novel and exciting field.
Keyphrases
  • high resolution
  • mass spectrometry
  • blood pressure
  • induced apoptosis
  • cell proliferation
  • small molecule
  • signaling pathway
  • protein protein
  • cell cycle arrest