Comparative Analysis of Ultrasonic NDT Techniques for the Detection and Characterisation of Hydrogen-Induced Cracking.
Rymantas J KažysLiudas MažeikaVykintas SamaitisReimondas ŠliterisPeter MerckŽydrius ViliūnasPublished in: Materials (Basel, Switzerland) (2022)
The article is devoted to the investigation of ultrasonic inspection techniques suitable for detecting hydrogen-induced cracking (HIC) and a high-temperature hydrogen attack (HTHA), which are of great importance in petrochemical and refinery industries. Four techniques were investigated: total focusing method (TFM), advanced velocity ratio (AVR) measurement, advanced ultrasonic backscatter technique (AUBT) and time of flight diffraction method using ultra low angle ultrasonic transducers (TULA). The experimental investigation has been carried out on two carbon steel samples cut off from a heat exchanger of an oil refinery and potentially affected by HIC. It was shown that the AVR technique did not reveal any damage and was not effective in the case of the investigated samples due to a thin damage zone with respect to the total thickness of the samples. The AUBT method enabled us to indicate and classify the presence of the hydrogen-induced damage; however, it is complicated to use in practise due to the need perform measurements exactly at the same position using two transducers of different frequencies. The method is more suitable for the verification of damage at a particular position, rather than for scanning. Both other methods-TFM and TULA-enabled us to identify the presence of HIC in large areas of samples. The obtained results have been verified using a metallographic analysis of the section cut from the side of the sample. The results of metallographic examinations have been compared with indications observed using above mentioned techniques and a good correspondence was obtained. It was demonstrated, that the TFM method can detect cracks with dimensions close to 200 µm, while larger cracks of 2 mm were observed very evidently using a 7.5 MHz phased array. Overall, the results suggested that the TULA method is the most suitable method for the primary detection of hydrogen-induced cracking, while the TFM is recommended for the precise assessment of the extent of the detected cracking.