Novel Fe 3 O 4 Nanoparticles with Bioactive Glass-Naproxen Coating: Synthesis, Characterization, and In Vitro Evaluation of Bioactivity.
Thalita Marcolan ValverdeViviane Martins Rebello Dos SantosPedro Igor Macário VianaGuilherme Mattos Jardim CostaAlfredo Miranda de GoesLucas Resende Dutra SousaViviane Flores XavierPaula Melo de Abreu VieiraDaniel de Lima SilvaRosana Zacarias DominguesJosé Maria da Fonte FerreiraÂngela Leão AndradePublished in: International journal of molecular sciences (2024)
Immune response to biomaterials, which is intimately related to their surface properties, can produce chronic inflammation and fibrosis, leading to implant failure. This study investigated the development of magnetic nanoparticles coated with silica and incorporating the anti-inflammatory drug naproxen, aimed at multifunctional biomedical applications. The synthesized nanoparticles were characterized using various techniques that confirmed the presence of magnetite and the formation of a silica-rich bioactive glass (BG) layer. In vitro studies demonstrated that the nanoparticles exhibited bioactive properties, forming an apatite surface layer when immersed in simulated body fluid, and biocompatibility with bone cells, with good viability and alkaline phosphatase activity. Naproxen, either free or encapsulated, reduced nitric oxide production, an inflammatory marker, while the BG coating alone did not show anti-inflammatory effects in this study. Overall, the magnetic nanoparticles coated with BG and naproxen showed promise for biomedical applications, especially anti-inflammatory activity in macrophages and in the bone field, due to their biocompatibility, bioactivity, and osteogenic potential.
Keyphrases