Photocatalytic Applications of Heterostructure Graphitic Carbon Nitride: Pollutant Degradation, Hydrogen Gas Production (water splitting), and CO2 Reduction.
Williams Kweku DarkwahKivyiro Adinas OswaldPublished in: Nanoscale research letters (2019)
Fabrication of the heterojunction composites photocatalyst has attained much attention for solar energy conversion due to their high optimization of reduction-oxidation potential as a result of effective separation of photogenerated electrons-holes pairs. In this review, the background of photocatalysis, mechanism of photocatalysis, and the several researches on the heterostructure graphitic carbon nitride (g-C3N4) semiconductor are discussed. The advantages of the heterostructure g-C3N4 over their precursors are also discussed. The conclusion and future perspectives on this emerging research direction are given. This paper gives a useful knowledge on the heterostructure g-C3N4 and their photocatalytic mechanisms and applications. IMPACT STATEMENTS: The paper on g-C3N4 Nano-based photocatalysts is expected to enlighten scientists on precise management and evaluating the environment, which may merit prospect research into developing suitable mechanism for energy, wastewater treatment and environmental purification.