Login / Signup

GSK-3 modulates SHH-driven proliferation in postnatal cerebellar neurogenesis and medulloblastoma.

Jennifer Karin OcasioRolf Dale P BatesCarolyn D RappTimothy R Gershon
Published in: Development (Cambridge, England) (2019)
Cerebellar development requires regulated proliferation of cerebellar granule neuron progenitors (CGNPs). Inadequate CGNP proliferation causes cerebellar hypoplasia whereas excessive CGNP proliferation can cause medulloblastoma, the most common malignant pediatric brain tumor. Although sonic hedgehog (SHH) signaling is known to activate CGNP proliferation, the mechanisms downregulating proliferation are less defined. We investigated CGNP regulation by GSK-3, which downregulates proliferation in the forebrain, gut and breast by suppressing mitogenic WNT signaling in mouse. In striking contrast to these systems, we found that co-deleting Gsk3a and Gsk3b blocked CGNP proliferation, causing severe cerebellar hypoplasia. The GSK-3 inhibitor CHIR-98014 similarly downregulated SHH-driven proliferation. Transcriptomic analysis showed activated WNT signaling and upregulated Cdkn1a in Gsk3a/b -deleted CGNPs. Ctnnb co-deletion increased CGNP proliferation and rescued cerebellar hypoproliferation in Gsk3a/b mutants, demonstrating physiological control of CGNPs by GSK-3, mediated through WNT. SHH-driven medulloblastomas similarly required GSK-3, as co-deleting Gsk3a/b blocked tumor growth in medulloblastoma-prone SmoM2 mice. These data show that a GSK-3/WNT axis modulates the developmental proliferation of CGNPs and the pathological growth of SHH-driven medulloblastoma. The requirement for GSK-3 in SHH-driven proliferation suggests that GSK-3 may be targeted for SHH-driven medulloblastoma therapy.
Keyphrases