We introduce a space-inhomogeneous generalization of the dynamics on interlacing arrays considered by Borodin and Ferrari (Commun Math Phys 325:603-684, 2014). We show that for a certain class of initial conditions the point process associated with the dynamics has determinantal correlation functions, and we calculate explicitly, in the form of a double contour integral, the correlation kernel for one of the most classical initial conditions, the densely packed. En route to proving this, we obtain some results of independent interest on non-intersecting general pure-birth chains, that generalize the Charlier process, the discrete analogue of Dyson's Brownian motion. Finally, these dynamics provide a coupling between the inhomogeneous versions of the TAZRP and PushTASEP particle systems which appear as projections on the left and right edges of the array, respectively.