Login / Signup

Cytochalasins from an Australian Marine Sediment-Derived Phomopsis sp. (CMB-M0042F): Acid-Mediated Intramolecular Cycloadditions Enhance Chemical Diversity.

Zhuo ShangRitesh RajuAngela A SalimZeinab G KhalilRobert J Capon
Published in: The Journal of organic chemistry (2017)
Chemical analysis of an Australian coastal marine sediment-derived fungus, Phomopsis sp. (CMB-M0042F), yielded the known cytochalasins J (1) and H (2), together with five new analogues, cytochalasins J1-J3 (3-5) and H1 and H2 (6 and 7). Structures of 1-7 were assigned on the basis of detailed spectroscopic analysis, chemical interconversion, and biosynthetic and mechanistic considerations. Of note, 1 and 2 proved to be highly sensitive to acid-mediated transformation, with 1 affording 3-5 and 2 affording 6 and 7. Whereas 1, 2, 4, and 5 were detected as natural products in crude culture extracts, 3, 6, and 7 were designated as acid-mediated handling artifacts. We propose novel stereo- and regiospecific intramolecular cycloadditions, under tight functional group control, that facilitate selective conversion of 1 and 2 to the rare 5/6/6/7/5- and 5/6/5/8-fused heterocycles 5 and 7, respectively. Knowledge of acid sensitivity within the cytochalasin family provides a valuable cautionary lesson that has the potential to inform our analysis of past and future investigations into this structure class and inspire novel biomimetic transformations leading to new chemical diversity.
Keyphrases
  • heavy metals
  • healthcare
  • molecular docking
  • magnetic resonance imaging
  • climate change
  • human health
  • risk assessment
  • current status
  • molecular dynamics simulations
  • energy transfer
  • tissue engineering