Superior In Vivo Wound-Healing Activity of Biosynthesized Silver Nanoparticles with Nepeta cataria (Catnip) on Excision Wound Model in Rat.
Berfin Rumeysa SariSukriye YesilotOzlem OzmenÇiğdem AydınPublished in: Biological trace element research (2024)
Silver nanoparticles were biosynthesized with Nepeta cataria plant extract. It was determined that the synthesized Nc-AgNPs gave a strong absorbance peak at 438 nm wavelength in the UV-vis spectrophotometer. SEM and TEM analyses of Nc-AgNPs showed that the synthesized nanoparticles had a spherical morphology. Based on XRD analysis, the average crystallite size of Nc-AgNPs was calculated at 15.74 nm. At the same time, EDS spectrum analysis exhibited dominant emission energy at 3 keV, indicative of Nc-AgNPs. Nc-AgNPs showed an inhibition zone of 12 nm in gram-negative Escherichia coli, 10 nm in gram-positive Enterococcus faecalis, and 11 nm in Staphylococcus aureus. Nc-AgNPs showed high antioxidant properties, with 63% at 5000 μg/mL. The wound-healing properties of Nc-AgNPs were evaluated in vivo in wound models created in a total of 20 Wistar albino male rats, divided into four groups. After 10 days of treatment, the highest wound closure rate was seen in the Nc-AgNP + Vaseline (Group IV) treatment group, at 94%. It was observed that Nc-AgNP + Vaseline nanoformulation significantly increased wound healing, similar to Silverdin®, and Vaseline alone supported healing but did not result in complete closure. Histopathological examination revealed an increase in mature Type 1 collagen in Group IV and positive control (Group II), with better collagen maturation in vehicle control (Group III) compared to negative control (Group I). Immunohistochemical analysis showed complete epithelialization in Group IV and Group II, with distinct cytokeratin expressions, while Group III exhibited mild expressions.