Login / Signup

Homogeneous and heterogeneous atmospheric ozonolysis of chlorobenzene:Mechanism, kinetics and ecotoxicity assessment.

Nuan WenMingxue LiYanru HuoYuxin ZhouJinchan JiangYuhui MaQingyuan GuJu XieMaoxia He
Published in: Chemosphere (2023)
The reactions between chlorobenzene(CB) and ozone have been studied comprehensively in this paper. Chlorobenzene is a commonly found chlorinated aromatic volatile organic compound(VOC), and its emission into the atmosphere can cause harm to the ecosystem and human health. The frequent occurrence of mineral particles from sandstorms exerts a significant influence on the atmospheric chemistry of the troposphere. Mineral particles are abundant in SiO 2 and Al 2 O 3 content. Therefore, we investigated the homogeneous and heterogeneous reaction processes of CB and ozone in the atmosphere by using density functional theory (DFT) method at the M06-2X/6-311++g(3df,2p)//M06-2X/6-31+g(d,p) level. The atmospheric fate, reaction rate and toxicity evaluation of CB ozonation were studied in the gas-phase section. Toxicity evaluation results showed that ozonation of CB could effectively reduce its toxicity. For the heterogeneous process, we simulated three types of SiO 2 clusters and nine types of (Al 2 O 3 )n clusters, and studied the configurations of CB adsorbed on the cluster surfaces. We found that adsorption of CB on the SiO 2 clusters was achieved through hydrogen bonding, while adsorption of CB on the Al 2 O 3 clusters was achieved through both hydrogen bonding and metal bonding. The energy for CB adsorption on the (Al 2 O 3 )n cluster surface was higher than that for the Si x O y (OH) z cluster surface, and both types of clusters exhibited efficient adsorption of CB. As the Si x O y (OH) z clusters grew larger, the rates for the reactions between O 3 and CB increased. CB travelled long distances along the Al 2 O 3 clusters, leading to an extended influence range.
Keyphrases