Mutual cheating strengthens a tropical seed dispersal mutualism.
Lin CaoPatrick A JansenBo WangChuan YanZhenyu WangJin ChenPublished in: Ecology (2021)
While cheating can cause the degradation or collapse of mutualisms, mutualisms may theoretically stabilize or strengthen if the cheating is mutual. Here, we present an asymmetric two-player game model to explore the evolutionary dynamics of mutual cheating in a mutualistic interaction. We found that the interaction evolved toward mutual cheating if cheating can help both partners obtain higher benefits or if counter-cheating yields more benefits to victims than simply tolerating exploitation by partners. Then, we present empirical evidence for such mutual cheating strengthening a seed dispersal mutualism in which rodents disperse seeds by scatter hoarding, rodents sabotage seed germination by pruning radicles, and seeds escape rodents by resprouting. By tracking >8,000 Pittosporopsis kerrii seeds throughout the dispersal process in a tropical forest in southwest China, we found that rodents provided better dispersal to seeds that they pruned, i.e., pruned seeds were dispersed farther and were more likely to establish seedlings than unpruned seeds. Compared with unpruned seeds, pruned seeds retained more of their nutrients, i.e., dry mass of pruned seeds was greater than that of unpruned seeds, and were stored for longer by rodents. These findings indicate that mutual cheating benefited both partners. Payoffs estimated from the field experiments indicated that mutual cheating was indeed favored in rodents and plants P. kerrii, and that neither partner was enslaved by the other under mutual cheating. Rather, the mutualism remained stable because the partners were able to exploit each other, and each partner attempted to gain the maximum benefits from the interaction. Our findings indicate that mutual cheating between two mutualists can enhance and stabilize mutualisms.