Strain-Engineered Nano-Ferroelectrics for High-Efficiency Piezocatalytic Overall Water Splitting.
Ran SuZhipeng WangLina ZhuYing PanDawei ZhangHui WenZheng-Dong LuoLinglong LiFa-Tang LiMing WuLiqiang HePankaj SharmaJan SeidelPublished in: Angewandte Chemie (International ed. in English) (2021)
Developing nano-ferroelectric materials with excellent piezoelectric performance for piezocatalysts used in water splitting is highly desired but also challenging, especially with respect to reaching large piezo-potentials that fully align with required redox levels. Herein, heteroepitaxial strain in BaTiO3 nanoparticles with a designed porous structure is successfully induced by engineering their surface reconstruction to dramatically enhance their piezoelectricity. The strain coherence can be maintained throughout the nanoparticle bulk, resulting in a significant increase of the BaTiO3 tetragonality and thus its piezoelectricity. Benefiting from high piezoelectricity, the as-synthesized blue-colored BaTiO3 nanoparticles possess a superb overall water-splitting activity, with H2 production rates of 159 μmol g-1 h-1 , which is almost 130 times higher than that of the pristine BaTiO3 nanoparticles. Thus, this work provides a generic approach for designing highly efficient piezoelectric nanomaterials by strain engineering that can be further extended to various other perovskite oxides, including SrTiO3 , thereby enhancing their potential for piezoelectric catalysis.