Superionic fluoride gate dielectrics with low diffusion barrier for two-dimensional electronics.
Kui MengZeya LiPeng ChenXingyue MaJunwei HuangJiayi LiFeng QinCaiyu QiuYilin ZhangDing ZhangYu DengYurong YangGenda GuHarold Y HwangQi-Kun XueYi CuiHongtao YuanPublished in: Nature nanotechnology (2024)
Exploration of new dielectrics with a large capacitive coupling is an essential topic in modern electronics when conventional dielectrics suffer from the leakage issue near the breakdown limit. Here, to address this looming challenge, we demonstrate that rare-earth metal fluorides with extremely low ion migration barriers can generally exhibit an excellent capacitive coupling over 20 μF cm -2 (with an equivalent oxide thickness of ~0.15 nm and a large effective dielectric constant near 30) and great compatibility with scalable device manufacturing processes. Such a static dielectric capability of superionic fluorides is exemplified by MoS 2 transistors exhibiting high on/off current ratios over 10 8 , ultralow subthreshold swing of 65 mV dec -1 and ultralow leakage current density of ~10 -6 A cm -2 . Therefore, the fluoride-gated logic inverters can achieve notably higher static voltage gain values (surpassing ~167) compared with a conventional dielectric. Furthermore, the application of fluoride gating enables the demonstration of NAND, NOR, AND and OR logic circuits with low static energy consumption. In particular, the superconductor-insulator transition at the clean-limit Bi 2 Sr 2 CaCu 2 O 8+δ can also be realized through fluoride gating. Our findings highlight fluoride dielectrics as a pioneering platform for advanced electronic applications and for tailoring emergent electronic states in condensed matter.