Login / Signup

Wafer-scale synthesis of two-dimensional ultrathin films.

Amresh Kumar SinghBaishali ThakurtaAnupam GiriMonalisa Pal
Published in: Chemical communications (Cambridge, England) (2023)
Two-dimensional (2D) materials, consisting of atomically thin layered crystals, have attracted tremendous interest due to their outstanding intrinsic properties and diverse applications in electronics, optoelectronics, and catalysis. The large-scale growth of high-quality ultrathin 2D films and their utilization in the facile fabrication of devices, easily adoptable in industrial applications, have been extensively sought after during the last decade; however, it remains a challenge to achieve these goals. Herein, we introduce three key concepts: (i) the microwave assisted quick (∼1 min) synthesis of wafer-scale (6-inch) anisotropic conducting ultrathin (∼1 nm) amorphous carbon and 2D semiconducting metal chalcogenide atomically thin films, (ii) a polymer-assisted deposition process for the synthesis of wafer-scale (6-inch) 2D metal chalcogenide and pyrolyzed carbon thin films, and (iii) the surface diffusion and epitaxial self-planarization induced synthesis of wafer-scale (2-inch) single crystal 2D binary and large-grain 2D ferromagnetic ternary metal chalcogenide thin films. The proposed synthesis concepts can pave a new way for the manufacture of wafer-scale high quality 2D ultrathin films and their utilization in the facile fabrication of devices.
Keyphrases
  • room temperature
  • metal organic framework
  • reduced graphene oxide
  • multidrug resistant
  • photodynamic therapy
  • heavy metals
  • visible light
  • tissue engineering