Infrared Resonance Raman of Bilayer Graphene: Signatures of Massive Fermions and Band Structure on the 2D Peak.
Lorenzo GraziottoFrancesco MachedaTommaso VenanziGuglielmo MarcheseSimone SotgiuTaoufiq OuajElena StellinoClaudia FasolatoPaolo PostorinoMarvin MetzelaarsPaul KögerlerBernd BeschotenMatteo CalandraMichele OrtolaniChristoph StampferFrancesco MauriLeonetta BaldassarrePublished in: Nano letters (2024)
Few-layer graphene possesses low-energy carriers that behave as massive Fermions, exhibiting intriguing properties in both transport and light scattering experiments. Lowering the excitation energy of resonance Raman spectroscopy down to 1.17 eV, we target these massive quasiparticles in the split bands close to the K point. The low excitation energy weakens some of the Raman processes that are resonant in the visible, and induces a clearer frequency-separation of the substructures of the resonance 2D peak in bi- and trilayer samples. We follow the excitation-energy dependence of the intensity of each substructure, and comparing experimental measurements on bilayer graphene with ab initio theoretical calculations, we trace back such modifications on the joint effects of probing the electronic dispersion close to the band splitting and enhancement of electron-phonon matrix elements.