Login / Signup

Highly Tough, Stretchable, and Enzymatically Degradable Hydrogels Modulated by Bioinspired Hydrophobic β-Sheet Peptides.

Yanxin XiangJiali ZhangHuanv MaoZexin YanXuebin WangChunyan BaoLinyong Zhu
Published in: Biomacromolecules (2021)
Peptide-based supramolecular hydrogels have attracted great attention due to their good biocompatibility and biodegradability and have become promising candidates for biomedical applications. The bottom-up self-assembly endows the peptides with a highly ordered secondary structure, which has proven to be an effective strategy to improve the mechanical properties of hydrogels through strong physical interactions and energy dissipation. Inspired by the excellent mechanical properties of spider-silk, which can be attributed to the rich β-sheet crystal formation by the hydrophobic peptide fragment, a hydrophobic peptide (HP) that can form a β-sheet assembly was designed and introduced into a poly(vinyl alcohol) (PVA) scaffold to improve mechanical properties of hydrogels by the cooperative intermolecular physical interactions. Compared with hydrogels without peptide grafting (P-HP0), the strong β-sheet self-assembly domain endows the hybrid hydrogels (P-HP20, P-HP29, and P-HP37) with high strength and toughness. The fracture tensile strength increased from 0.3 to 2.1 MPa (7 times), the toughness increased from 0.4 to 21.6 MJ m-3 (54 times), and the compressive strength increased from 0.33 to 10.43 MPa (31 times) at 75% strain. Moreover, the hybrid hydrogels are enzymatically degradable due to the dominant contribution of the β-sheet assembly for network cross-linking. Combining the good biocompatibility and sustained drug release of the constructed hydrogels, this hydrophobic β-sheet peptide represents a promising candidate for the rational design of hydrogels for biomedical applications.
Keyphrases
  • drug release
  • tissue engineering
  • drug delivery
  • hyaluronic acid
  • extracellular matrix
  • wound healing
  • ionic liquid
  • mental health
  • working memory
  • quantum dots