Method for High Frequency Underway N2 Fixation Measurements: Flow-Through Incubation Acetylene Reduction Assays by Cavity Ring Down Laser Absorption Spectroscopy (FARACAS).
Nicolas CassarWeiyi TangHans GabathulerKuan HuangPublished in: Analytical chemistry (2018)
Because of the difficulty in resolving the large variability of N2 fixation with current methods which rely on discrete sampling, the development of new methods for high-resolution measurements is highly desirable. We present a new method for high-frequency measurements of aquatic N2 fixation by continuous flow-through incubations and spectral monitoring of the acetylene (C2H2, a substrate analog for N2) reduction to ethylene (C2H4). In this method, named Flow-through Incubation Acetylene Reduction Assays by Cavity Ring-Down Laser Absorption Spectroscopy (FARACAS), dissolved C2H2 is continuously admixed with seawater upstream of a continuous-flow stirred-tank reactor (CFSR) in which C2H2 reduction takes place. Downstream of the flow-through incubator, the C2H4 gas is stripped using a bubble column contactor and circulated with a diaphragm pump into a wavelength-scanned cavity ring down laser absorption spectrometer (CRDS). Our method provides high-resolution and precise mapping of aquatic N2 fixation, its diel cycle, and its response to environmental gradients, and can be adapted to measure other biological processes. The short-duration of the flow-through incubations without preconcentration of cells minimizes potential artifacts such as bottle containment effects while providing near real-time estimates for adaptive sampling. We expect that our new method will improve the characterization of the biogeography and kinetics of aquatic N2 fixation rates.
Keyphrases
- high frequency
- high resolution
- minimally invasive
- transcranial magnetic stimulation
- high speed
- risk assessment
- mass spectrometry
- high throughput
- tandem mass spectrometry
- oxidative stress
- induced apoptosis
- computed tomography
- ionic liquid
- magnetic resonance imaging
- cell death
- extracorporeal membrane oxygenation
- endoplasmic reticulum stress
- mechanical ventilation
- structural basis
- cell proliferation
- organic matter