Login / Signup

Ampholytic Peptides Consisting of an Alternating Lysine/Glutamic Acid Sequence for the Simultaneous Formation of Polyion Complex Vesicles.

Kousuke TsuchiyaSeiya FujitaKeiji Numata
Published in: ACS polymers Au (2024)
Nanoarchitectures such as micelles and vesicles that self-assemble via electrostatic interactions between their charged polymeric components have been widely used as material delivery platforms. In this work, ampholytic peptides with a sequence of alternating lysine and glutamic acid residues were designed and synthesized via chemoenzymatic polymerization. This alternating sequence was achieved by trypsin-catalyzed polymerization of a dipeptide monomer. Due to the electrostatic interaction between the anionic and cationic residues, the prepared ampholytic peptides spontaneously formed nanosized assemblies with a size of 100-200 nm in water. Modification with tetra(ethylene glycol) (TEG) at the N -terminus of these ampholytic alternating peptides resulted in the formation of stable nanosized assemblies, while peptides consisting of random sequences of lysine and glutamic acid formed large aggregates with deteriorated stability even with TEG modification. Morphological observations using a field-emission scanning electron microscope and an atomic force microscope revealed that the obtained assemblies were spherical and hollow, indicating the spontaneous formation of vesicles from the TEG-modified ampholytic alternating peptides. These vesicles were able to encapsulate a model fluorescent protein within their hollow structures without structural collapse causing loss of fluorescence, demonstrating the potential of these nanocarriers for use in material delivery systems.
Keyphrases