Login / Signup

Inwardly rectifying K + channels 4.1 and 5.1 (Kir4.1/Kir5.1) in the renal distal nephron.

Wen-Hui WangDao-Hong Lin
Published in: American journal of physiology. Cell physiology (2022)
The inwardly rectifying potassium channel (Kir) 4.1 (encoded by KCNJ10 ) interacts with Kir5.1 (encoded by KCNJ16 ) to form a major basolateral K + channel in the renal distal convoluted tubule (DCT), connecting tubule (CNT), and the cortical collecting duct (CCD). Kir4.1/Kir5.1 heterotetramer plays an important role in regulating Na + and K + transport in the DCT, CNT, and CCD. A recent development in the field has firmly established the role of Kir4.1/Kir5.1 heterotetramer of the DCT in the regulation of thiazide-sensitive Na-Cl cotransporter (NCC). Changes in Kir4.1/Kir5.1 activity of the DCT are an essential step for the regulation of NCC expression/activity induced by dietary K + and Na + intakes and play a role in modulating NCC by type 2 angiotensin II receptor (AT2R), bradykinin type II receptor (BK2R), and β-adrenergic receptor. Since NCC activity determines the Na + delivery rate to the aldosterone-sensitive distal nephron (ASDN), a distal nephron segment from late DCT to CCD, Kir4.1/Kir5.1 activity plays a critical role not only in the regulation of renal Na + absorption but also in modulating renal K + excretion and maintaining K + homeostasis. Thus, Kir4.1/Kir5.1 activity serves as an important component of renal K + sensing mechanism. The main focus of this review is to provide an overview regarding the role of Kir4.1 and Kir5.1 of the DCT and CCD in the regulation of renal K + excretion and Na + absorption.
Keyphrases
  • angiotensin ii
  • minimally invasive
  • binding protein