Login / Signup

Poisoning-Resistant NOx Reduction in the Presence of Alkaline and Heavy Metals over H-SAPO-34-Supported Ce-Promoted Cu-Based Catalysts.

Penglu WangLijun YanYundong GuSanchai KuboonHongrui LiTingting YanLiyi ShiDengsong Zhang
Published in: Environmental science & technology (2020)
Selective catalytic reduction (SCR) of NOx using NH3 in the presence of alkaline and heavy metals is still an issue in the application of a stationary source. Reported here is the rational design of a novel H-SAPO-34-supported ceria-promoted copper-based catalyst (CuCe/H-SAPO-34) that demonstrates exceptional resistance against alkali (K), alkaline earth (Ca), and heavy metal (Pb) poisoning during SCR of NOx. The H-SAPO-34 support contained numerous acid sites that allowed Cu-based catalysts to maintain their catalytic activity while also resisting poisoning by K and Ca. Decorating the catalyst with CeO2 promoted the low-temperature deNOx activity by accelerating the redox cycle with Cu species and assisted the H-SAPO-34 in capturing Ca and Pb. H-SAPO-34-supported ceria-promoted copper oxide catalysts prevented the irreversible combination of K, Ca, or Pb with the active centers, providing the catalyst with excellent poisoning resistance. This work provides a strategy for the development of high-performance, poisoning-resistant catalysts for NH3-SCR of NOx in the presence of alkaline and heavy metals.
Keyphrases