Login / Signup

Synchronization in the prefrontal-striatal circuit tracks behavioural choice in a go-no-go task in rats.

Christine StubbendorffManuel Molano-MazonAndrew M J YoungTodor V Gerdjikov
Published in: The European journal of neuroscience (2018)
Rodent striatum is involved in sensory-motor transformations and reward-related learning. Lesion studies suggest dorsolateral striatum, dorsomedial striatum and nucleus accumbens underlie stimulus-response transformations, goal-directed behaviour and reward expectation, respectively. In addition, prefrontal inputs likely control these functions. Here, we set out to study how reward-driven behaviour is mediated by the coordinated activity of these structures in the intact brain. We implemented a discrimination task requiring rats to either respond or suppress responding on a lever after the presentation of auditory cues in order to obtain rewards. Single unit activity in the striatal subregions and pre-limbic cortex was recorded using tetrode arrays. Striatal units showed strong onset responses to auditory cues paired with an opportunity to obtain reward. Cue-onset responses in both striatum and cortex were significantly modulated by previous errors suggesting a role of these structures in maintaining appropriate motivation or action selection during ongoing behaviour. Furthermore, failure to respond to the reward-paired tones was associated with higher pre-trial coherence among striatal subregions and between cortex and striatum suggesting a task-negative corticostriatal network whose activity may be suppressed to enable processing of reward-predictive cues. Our findings highlight that coordinated activity in a distributed network including both pre-limbic cortex and multiple striatal regions underlies reward-related decisions.
Keyphrases