Amino acid mutations in proteins are random and those mutations which are beneficial or neutral survive during the course of evolution. Conservation or co-evolution analyses are performed on the multiple sequence alignment of homologous proteins to understand how important different amino acids or groups of them are. However, these traditional analyses do not explore the directed influence of amino acid mutations, such as compensatory effects. In this work we develop a method to capture the directed evolutionary impact of one amino acid on all other amino acids, and provide a visual network representation for it. The method developed for these directed networks of inter- and intra-protein evolutionary interactions can also be used for noting the differences in amino acid evolution between the control and experimental groups. The analysis is illustrated with a few examples, where the method identifies several directed interactions of functionally critical amino acids. The impact of an amino acid is quantified as the number of amino acids that are influenced as a consequence of its mutation, and it is intended to summarize the compensatory mutations in large evolutionary sequence data sets as well as to rationally identify targets for mutagenesis when their functional significance can not be assessed using structure or conservation.