Login / Signup

Effects of ultraviolet irradiation on beta-tricalcium phosphate as a bone graft substitute.

Akinori MoroiAkihiro TakayamaGo KobayashiKoichiro Ueki
Published in: Odontology (2022)
Surface modification of various materials using ultraviolet (UV) irradiation improves their wettability. The purpose of this study was to investigate the wettability of a β-tricalcium phosphate (TCP) surface and the composition changes and bioactivity of β-TCP after UV irradiation. We applied 172 nm UV treatment to a β-TCP surface and measured the contact angle before and after UV irradiation. Energy-dispersive X-ray and Fourier transform infrared spectroscopy examinations were performed on the β-TCP disk with or without UV treatment. In an adhesion test of bone marrow cells using β-TCP disks with and without UV irradiation, cell attachment was measured 10, 30, 50, and 70 h after β-TCP insertion. UV-irradiated β-TCP osteogenesis and absorption of bone substitutes were evaluated using hematoxylin and eosin and tartrate-resistant acid phosphatase (TRAP) staining in a rabbit sinus model. The contact angle on the TCP surface decreased from 70° to 10° owing to UV irradiation. Conversely, UV irradiation did not change the composition of carbon, oxygen, and phosphorus. In the cell adhesion test, UV-irradiated β-TCP significantly increased cell adhesion compared with UV-unirradiated β-TCP after 10 to 30 h of culture. In the rabbit sinus model, TRAP staining showed that UV-irradiated β-TCP significantly increased the number of TRAP-positive cells compared with unirradiated β-TCP granules in the central part of β-TCP. Our results indicate that the UV irradiation of β-TCP improves its clinical utility for surgical bone augmentation in the oral and maxillofacial region.
Keyphrases