Sequential analysis of variance: Increasing efficiency of hypothesis testing.
Meike SteinhilberMartin SchnuerchAnna-Lena SchubertPublished in: Psychological methods (2024)
Researchers commonly use analysis of variance (ANOVA) to statistically test results of factorial designs. Performing an a priori power analysis is crucial to ensure that the ANOVA is sufficiently powered, however, it often poses a challenge and can result in large sample sizes, especially if the expected effect size is small. Due to the high prevalence of small effect sizes in psychology, studies are frequently underpowered as it is often economically unfeasible to gather the necessary sample size for adequate Type-II error control. Here, we present a more efficient alternative to the fixed ANOVA, the so-called sequential ANOVA that we implemented in the R package "sprtt." The sequential ANOVA is based on the sequential probability ratio test (SPRT) that uses a likelihood ratio as a test statistic and controls for long-term error rates. SPRTs gather evidence for both the null and the alternative hypothesis and conclude this process when a sufficient amount of evidence has been gathered to accept one of the two hypotheses. Through simulations, we show that the sequential ANOVA is more efficient than the fixed ANOVA and reliably controls long-term error rates. Additionally, robustness analyses revealed that the sequential and fixed ANOVAs exhibit analogous properties when their underlying assumptions are violated. Taken together, our results demonstrate that the sequential ANOVA is an efficient alternative to fixed sample designs for hypothesis testing. (PsycInfo Database Record (c) 2024 APA, all rights reserved).