Login / Signup

Triumphing over Charge Transfer Limitations of PEDOT Nanofiber Reduction Catalyst by 1,2-Ethanedithiol Doping for Quantum Dot Solar Cells.

Tea-Yon KimTae Kyung LeeByung Su KimSeul Chan ParkSungjin LeeSeung Soon ImJuan BisquertYong Soo Kang
Published in: ACS applied materials & interfaces (2017)
Charge transfer between a conducting polymer-based counter electrode (CE) and a polysulfide (S2-/Sn2-) electrolyte mediator is a key limitation to improvements of solar energy conversion efficiency (ECE) in quantum-dot-sensitized solar cells (QDSCs). In this paper, 1,2-ethanedithiol (EDT) was doped into nanofibrous poly(3,4-ethylenedioxythiophene) (PEDOT NF) to overcome the charge transfer limitation between PEDOT NF and S2-/Sn2-. EDT not only helps to reduce the aggregation and thus enhance the linearization of the PEDOT chains but also changes the molecular conformation of the PEDOT chains from a benzoid to a quinoid structure. EDT-doped PEDOT NF-based CEs showed almost 3.7 times higher conductivity, better electrocatalytic activity, and improved compatibility with S2-/Sn2- in an aqueous electrolyte. As a result, the charge transfer resistance between the polymer-based CE and the S2-/Sn2- electrolyte was significantly reduced, resulting in over 3% ECE in QDSCs, more than double that of a bare PEDOT NF-based CE.
Keyphrases