Login / Signup

Making the most of population genomic data to understand the importance of chromosomal inversions for adaptation and speciation.

Claire Mérot
Published in: Molecular ecology (2020)
Chromosomal inversions are increasingly found to differentiate locally adapted populations. This adaptive role is predictable because reduced recombination protects allelic combinations from gene flow. However, we are far from understanding how frequently inversions contribute to local adaptation and how widespread this phenomenon is across species. In a "From the Cover" article in this issue of Molecular Ecology, Huang, Andrew, Owens, Ostevik, and Rieseberg (2020) provide an important step towards this goal not only by finding adaptive inversions in a sunflower ecotype, but also by reversing the approach used to investigate the link between adaptation and inversions. Most studies compare two phenotypes and uncover divergence at a few regions, of which some can subsequently be identified as inversions. In contrast, Huang et al first catalogue putative inversions and then test genotype-environment associations, which allows them to ask systematically whether inversions may be adaptive and in which ecological contexts. They achieve that by revisiting a previous reduced-representation sequencing (RAD-sequencing) data set, demonstrating the suitability of this method to detect inversions in species with limited genomic resources. As such, Huang et al pave the way for a better understanding of the evolutionary role of structural genomic variation and highlight that accounting for inversions in population genomics is now possible, and much needed, in a wider range of organisms.
Keyphrases
  • copy number
  • single cell
  • dna damage
  • magnetic resonance
  • dna repair
  • electronic health record
  • computed tomography
  • machine learning
  • oxidative stress
  • climate change
  • big data
  • dna methylation
  • single molecule